Name		Period Da	ate
		1	
Unit 2 -		Isotope Lab	
	m m		D 🖤 💿
Introduction			
Isotopes are atoms of the same chemical element, e	ach having	g a different mass nu	mber (different number of <u>neutrons</u>).
Isotopes differ in mass number but never in atomic	<u>number</u>	(# of protons). Sinc	e we cannot see atoms, you will use
M&M's to represent atoms. The purpose of this is observe the difference between isotopes	ad is to c	alculate the averag	e atomic mass using M&M's, and to
observe the unterence between isotopes.			
1. The mass number of the atom is the total numb	per of		&
2. Isotopes are different types of atoms of the san	ne elemen	t, but with a differer	nt number of
2 Carbon 12 is an isotone of Carbon with a mass i	number of	12 How many neut	rons are in Carbon 122
5. Carbon-15 is an isotope of Carbon with a mass i		15. How many neur	
Refer to this picture of an atom's nucleus to]		
answer questions 4-9.	4.	How many	protons?
		What is the a	tomic #?
	6.	What elemen	t is this?
	7	How many n e	eutrons?
	8.	What is the	mass #?
	۵	What is the isoton	e name?
			<u> </u>

Procedure

1. Each group will get 1 small bag of plain M&M's and 1 small bag of caramel M&M's.

2. Count the number of Plain M&M's in your bag and record this number in the data table below. Repeat this step for the caramel M&M's.

3. Using a piece of clean paper towel as a weighing boat, measure the total mass of your plain M&M's and record this number in the data table. Repeat this step for the caramel M&M's. ***REMEMBER to ZERO out the paper towel!

DATA TABLE:	Number of M&M's	Mass of M&M's
lsotope #1 - Plain M&M's		
lsotope #2 – Caramel M&M's		
Total Number of all your M&M's		

Calculate the average mass of each isotope using the formula to the right.

Total Mass Average Mass = # of M&M's

Isotope #1 – Plain M&M	Isotope #2 – Caramel M&M
10. Average mass of Isotope #1 =	11. Average mass of Isotope #2 =

Calculate the percent abundance of each isotope. Of all the M&M's you have, what % of them are plain and what % are caramel?

% abundance = $\frac{\# of \ each \ type \ of \ M\&M}{TOTAL \ \# \ of \ all \ M\&M's} \ x \ 100$

lsotope #1 – Plain M&M	Isotope #2 – Caramel M&M	
12. % abundance of Isotope #1 =	13. % abundance of Isotope #2 =	

14. Calculate the average "atomic mass" of your M&M's.

Average Atomic Mass = $\frac{(mass of isotope 1)(\% abundance) + (mass of isotope 2)(\% abundance) ...}{(mass of isotope 2)(\% abundance)}$

100

Average Atomic Mass =

Conclusion Questions

15. Is your average "atomic mass" close to or the same as students in other groups?

16. Would using king size bags of M&M's make a difference to the average "atomic mass"? Why or why not?

17. How do Hydrogen-1, Hydrogen-2, and Hydrogen-3 differ from each other?

18. Sulfur has 4 isotopes: sulfur-32 is 95.0%, sulfur-33 is 0.76%, sulfur-34 is 3.22%, and sulfur-36 is 0.89% abundant. Calculate its average atomic mass.

Average Atomic Mass =