Unit 2 - M\&M Isotope Lab

Introduction

Isotopes are atoms of the same chemical element, each having a different mass number (different number of neutrons). Isotopes differ in mass number but never in atomic number (\# of protons). Since we cannot see atoms, you will use M\&M's to represent atoms. The purpose of this lab is to calculate the average atomic mass using M\&M's, and to observe the difference between isotopes.

1. The mass number of the atom is the total number of
\&
2. Isotopes are different types of atoms of the same element, but with a different number of \qquad
3. Carbon-13 is an isotope of Carbon with a mass number of 13 . How many neutrons are in Carbon-13? \qquad

Refer to this picture of an atom's nucleus to
answer questions 4-9.

4. How many protons? \qquad
5. What is the atomic \#? \qquad
6. What element is this? \qquad
7. How many neutrons? \qquad
8. What is the mass \#? \qquad
9. What is the isotope name? \qquad

Procedure

1. Each group will get 1 small bag of plain $M \& M^{\prime}$ s and 1 small bag of caramel $M \& M^{\prime}$.
2. Count the number of Plain $M \& M^{\prime}$ s in your bag and record this number in the data table below. Repeat this step for the caramel M\&M's.
3. Using a piece of clean paper towel as a weighing boat, measure the total mass of your plain M\&M's and record this number in the data table. Repeat this step for the caramel M\&M's. ***REMEMBER to ZERO out the paper towel!

DATA TABLE:	Number of M\&M's	Mass of M\&M's
Isotope \#1 - Plain M\&M's		
Isotope \#2 - Caramel M\&M's		
Total Number of all your M\&M's		

Calculate the average mass of each isotope using the formula to the right.

$$
\text { Average Mass }=\frac{\text { Total Mass }}{\# \text { of } M \& M^{\prime} s}
$$

Isotope \#1 - Plain M\&M	Isotope \#2 - Caramel M\&M
10. Average mass of Isotope \#1 $=$	11. Average mass of Isotope \#2 $=$

Calculate the percent abundance of each

isotope. Of all the M\&M's you have, what \% \% abundance $=\frac{\# \text { of each type of } M \& M}{\text { TOTAL } \# \text { of all } M \& M^{\prime} s} \times 100$ of them are plain and what $\%$ are caramel?

Isotope \#1 - Plain M\&M	Isotope \#2 - Caramel M\&M
12. \% abundance of Isotope \#1 =	13. \% abundance of Isotope \#2 $=$

14. Calculate the average "atomic mass" of your M\&M's.

Average Atomic Mass $=\frac{(\text { mass of isotope 1 })(\% \text { abundance })+(\text { mass of isotope } 2)(\% \text { abundance }) \ldots}{100}$
\square

Conclusion Questions

15. Is your average "atomic mass" close to or the same as students in other groups?
16. Would using king size bags of M\&M's make a difference to the average "atomic mass"? Why or why not?
17. How do Hydrogen-1, Hydrogen-2, and Hydrogen-3 differ from each other?
18. Sulfur has 4 isotopes: sulfur- 32 is 95.0%, sulfur- $\mathbf{3 3}$ is 0.76%, sulfur- 34 is 3.22%, and sulfur- 36 is 0.89% abundant. Calculate its average atomic mass.
\square
