
Unit 10: Acids and Bases

Properties of Acids and Bases

Acids	Bases	
 Corrosive Taste sour Reacts with more active metals Affects the color of acid-base indicators Ionize in water Electrolyte 	 Slippery feel (soap) Taste bitter Affects the color of acid-base indicators Ionize in water Electrolyte 	

pH Scale (power of hydrogen)

A change of **1** pH unit represents a change by a factor of **10** in the hydrogen ion concentration [H+].

Acid-Base Indicators

Indicators: organic compounds used to determine the approximate pH of a solution.

common indicators	Acids	Bases
litmus	red	blue
phenolphthalein	colorless	pink

How do we define acids and bases?

There are a few different definitions...

The Arrhenius Theory

An **Arrhenius acid** contains H+ ions which are liberated when dissolved in water.

An **Arrhenius base** contains OH- ions which are liberated when dissolved in water.

Strong Acid

An acid that will 100% ionize (dissociate) in water.

$$HCI \longrightarrow H^+ + CI^-$$

*Note: Most acids are weak acids (*partially* ionize). Organic acids that contain -COOH are weak acids.

Strong Base

A base that will 100% ionize (dissociate) in water.

$$KOH \longrightarrow K^+ + OH^-$$

Notable Strong Acids:

HCI HBr HI

HNO₃ HCIO₄ H₂SO₄

Notable Strong Bases:

NaOH KOH RbOH

 $Ca(OH)_2$ $Ba(OH)_2$ $Sr(OH)_2$

How does ammonia react with water?

To be completed in class! (leave 2-3 lines)

The Brønsted-Lowry Theory

A Brønsted-Lowry acid is a proton donor.

A Brønsted-Lowry base is a proton <u>acceptor</u>.

Conjugate Acid-Base Pairs

In a Brønsted-Lowry acid-base reaction, a proton is transferred from an acid to a base. This reaction forms conjugate acid-base pairs.

Conjugate acid-base pairs differ by one proton (H+).

Ex. HNO₃ and NO₃-

Acid-Base Reactions

To be completed in class! (leave 2 lines above)

$$HCO_{3^{-}(aq)} + S^{2-}(aq) \rightleftharpoons HS^{-}(aq) + CO_{3^{2-}(aq)}$$

To be completed in class! (leave 4 lines below)

Let's consider two acid-base reactions: Connect and label the acid (A), base (B), conjugate acid (CA), and conjugate base (CB).

leave 1 line

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

leave 2 lines

$$CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$$

leave 3 lines

Practice

1. Identify the conjugate 2. Identify the conjugate bases of the following acids:

acids of the following bases:

a) H₂SO₄

a) HNO₃

b) OH-

b) OH-

3. Connect and label the conjugate acid-base pairs in the following equation:

To be

completed in

class!

 $CH_3COOH + HPO_4^{2-} \rightleftharpoons CH_3COO^{-} + H_2PO_4^{-}$