Unit 10: Acids and Bases

Properties of Acids and Bases

Acids

Bases

- Corrosive
- Taste sour
- Reacts with more active metals
- Affects the color of acid-base indicators
- Ionize in water
- Electrolyte
- Slippery feel (soap)
- Taste bitter
- Affects the color of acid-base indicators
- Ionize in water
- Electrolyte

pH Scale (power of hydrogen)

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$

pH < 7 acidic
 $\mathrm{pH}=7$
 neutral
 $\mathrm{pH}>7$ basic

7					

10^{0}

A change of $\mathbf{1} \mathrm{pH}$ unit represents a change by a factor of $\mathbf{1 0}$ in the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$.

Acid-Base Indicators

Indicators: organic compounds used to determine the approximate pH of a solution.

common indicators	Acids	Bases
litmus	red	blue
phenolphthalein	colorless	pink

How do we define acids and bases?

There are a few different definitions...

The Arrhenius Theory

An Arrhenius acid contains H^{+}ions which are liberated when dissolved in water.

An Arrhenius base contains OH^{-}ions which are liberated when dissolved in water.

Strong Acid

An acid that will 100% ionize (dissociate) in water.

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

*Note: Most acids are weak acids (partially ionize).
Organic acids that contain - COOH are weak acids.

Strong Base

A base that will 100% ionize (dissociate) in water.

$$
\mathrm{KOH} \longrightarrow \mathrm{~K}^{+}+\mathrm{OH}^{-}
$$

Notable Strong Acids:

HCl HBr HI HNO_{3}
 HClO_{4}
 $\mathrm{H}_{2} \mathrm{SO}_{4}$

Notable Strong Bases:

NaOH

 KOHRbOH
$\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ba}(\mathrm{OH})_{2}$
$\mathrm{Sr}(\mathrm{OH})_{2}$

How does ammonia react with water?

To be completed in class! (leave 2-3 lines)

The Brønsted-Lowry Theory

A Bronsted-Lowry acid is a proton donor.

Conjugate Acid-Base Pairs

In a Brønsted-Lowry acid-base reaction, a proton is transferred from an acid to a base. This reaction forms conjugate acid-base pairs.

Conjugate acid-base pairs differ by one proton $\left(\mathrm{H}^{+}\right)$.
Ex. HNO_{3} and $\mathrm{NO}_{3}{ }^{-}$

Acid-Base Reactions

To be completed in class! (leave 2 lines above)

$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{S}^{2-}{ }_{(\mathrm{aq})} \rightleftharpoons \mathrm{HS}^{-}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$

To be completed in class! (leave 4 lines below)

Let's consider two acid-base reactions:
Connect and label the acid (A), base (B), conjugate acid (CA), and conjugate base (CB).
leave 1 line

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

leave 2 lines

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

leave 3 lines

Practice

1. Identify the conjugate 2. Identify the conjugate bases of the following acids of the following acids: bases:

To be
a) HNO_{3} completed in class!

3. Connect and label the conjugate acid-base pairs in the following equation:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HPO}_{4}{ }^{2-} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
