Unit 4: Covalent Bonding

Molecule: Two or more atoms that are covalently bonded.

Covalent (or Molecular) Compound: A pure substance composed of identical molecules

How can we determine whether a bond is ionic or covalent?

As a general rule:

Covalent bonds form between nonmetals
(sharing of
electrons).
Ionic bonds form between a metal and
a nonmetal
(attraction between cation and anion).

Ex. NaCl
 $\mathrm{Na}=$ metal
 $\mathrm{Cl}=$ nonmetal

To determine the exact bond type, use the difference in electronegativity between the bonding atoms...

Determining Bond Type

Electronegativity Difference ($\triangle \mathrm{EN}$)
0.0
0.3

Nonpolar
Covalent (≤ 0.3)
Equal sharing of e^{-}
No charges
Ex. $\mathrm{H}-\mathrm{H}$

Polar
 Covalent

Ionic

(≥ 1.7)
Unequal sharing of e^{-}
Partial charges
Ex. ${ }^{\delta+}{ }^{+}-{ }^{\delta-}$

Loss or gain of e^{-}
Full ionic charges
Ex. $\mathrm{Na}^{+} \mathrm{Cl}^{-}$

2 Types of covalent bonds

Delta (δ) represents polarity (partial charge)

Practice

Classify each bond as nonpolar covalent, polar covalent*, or ionic.
*If polar covalent, add $\boldsymbol{\delta}+$ or $\boldsymbol{\delta}$ - to show polarity.
Cl-C
Cl-K
$\mathrm{Cl}-\mathrm{Cl}$
(3.2) (2.5)
(3.2) (0.8)
(3.2) (3.2)

To be completed in class! (leave 2 lines below)

Lewis structures: The use of dots and dashes to represent bonding and nonbonding pairs of electrons in a molecule.

**Each line represents a shared pair of e-

Steps for drawing Lewis structures

1. Total the valence electrons from all atoms in the molecule (if an ion, add or subtract its charge).
2. Use dashes to connect all atoms to a "central" atom.
3. Add dots to the outer atoms to complete their octet (except H).
4. Add remaining electrons to complete the central atom's octet...
5. If there aren't enough electrons, use lone pairs on

For steps, leave space on the righthand side of your notes for examples the outer atoms to form double (=) or triple (\equiv) bonds.
**Only C, N, and O can form triple bonds.
6. If an ion, put the structure in brackets and write the charge on the top right, outside the brackets.

Is your Lewis structure correct?

\square Used the exact number of valence eavailable

■All atoms (except H) surrounded by 8 e-

