Isotopes and Atomic Mass

Isotope - atoms of the same element with different numbers of neutrons

*note - because isotopes have the same number of protons, they have identical chemical properties

Example:

Isotopes of potassium

Various symbolic notations

 for isotopes:Atomic \#

Mass \#

${ }_{\rightarrow 19}^{39} \mathbf{1 9} \left\lvert\, \quad$| 40 |
| :--- |
| 19 | $\mathbf{K}\right.$

${ }_{19}^{41} \mathbf{K}$
potassium 41

K-41

Mass number changes! (more or less neutrons)

Atomic Mass -

Remember that the mass of
1 proton ~ 1 neutron

Scientists have defined a unit that is the average mass of these two nucleons called the atomic mass unit (amu)

$1 \mathrm{amu}=1 / 12$ the mass of a carbon-12 isotope

Atomic mass: the weighted average mass of all the isotopes of an element

General Formula for calculating a weighted average:

$$
a \%(A)+b \%(B)+c \%(C) . .
$$

$$
\begin{aligned}
& \text { *change the } \% \text { to a } \\
& \text { decimal by moving the } \\
& \text { decimal point } 2 \text { places! } \\
& 35 \%=0.35 \\
& 1.43 \%=0.0143
\end{aligned}
$$

Example Problem:

Use the information below to calculate the

 atomic mass for magnesium.Percent
Isotope
Mg-24
Mg-25
Mg-26
Abundance
78.70 \%
10.13 \%
11.17 \%
Mass
23.99 amu
24.99 amu
25.94 amu

Where can you go to check that your answer is correct?

Remember...\%(mass) + \%(mass) + etc (change \% to a decimal first)

Percent
Isotope Abundance
Mass
Mg-24
Mg-25
Mg-26
Abundance
78.70 \%
23.99 amu
10.13 \%
24.99 amu
11.17 \%
25.94 amu

$(0.7870 \times 23.99)+(0.1013 \times 24.99)+(0.1117 \times 25.94)=$

(do this as $\mathbf{1}$ long step in your calculator!)

$$
=24.31 \mathrm{amu}
$$

Find the Atomic Mass

isotope
Cu-63
Cu-65
\% abundance
69.15\% 30.85\%

Try this and then we will check your answer...

Find the Atomic Mass

mass (amu)
62.929
64.928
\% abundance 69.15\% 30.85\%

How can you check your answer?

Use your periodic table and check the atomic mass.

