Isotopes and Atomic Mass

<u>Isotope</u> - atoms of the same element with different numbers of neutrons

*note - because isotopes have the same number of protons, they have identical chemical properties

Example:

Isotopes of potassium

Mass number changes! (more or less neutrons)

Remember that the mass of 1 proton ~ 1 neutron

Scientists have defined a unit that is the average mass of these two nucleons called the

<u>atomic mass unit (amu)</u>

1 amu = 1/12 the mass of a carbon-12 isotope

Atomic mass: the weighted average mass of all the isotopes of an element

General Formula for calculating a weighted average:

a%(A) + b%(B) + c%(C)...

*change the % to a decimal by moving the decimal point 2 places! 35% = 0.351.43% = 0.0143

Example Problem: Use the information below to calculate the atomic mass for magnesium.

	Percent	
lsotope	<u>Abundance</u>	<u>Mass</u>
Mg-24	78.70 %	23.99 amu
Mg-25	10.13 %	24.99 amu
Mg-26	11.17 %	25.94 amu

Where can you go to check that your answer is correct?

Remember...%(mass) + %(mass) + etc (change % to a decimal first)

	Percent	
lsotope	<u>Abundance</u>	Mass
Mg-24	78.70 %	23.99 amu
Mg-25	10.13 %	24.99 amu
Mg-26	11.17 %	25.94 amu

(0.7870 x 23.99) + (0.1013 x 24.99) + (0.1117 x 25.94) =

(do this as 1 long step in your calculator!)

Find the Atomic Mass

isotope Cu-63 Cu-65 mass (amu) 62.929 64.928 % abundance 69.15% 30.85%

Try this and then we will check your answer...

Find the Atomic Mass

isotope **Cu-63 Cu-65** mass (amu) 62.929 64.928

% abundance **69.15**% 30.85%

Remember to move

decimal on %

 $(62.929 \times 0.6915) + (64.928 \times 0.3085) =$

How can you check your answer?

Use your periodic table and check the atomic mass.