Isotopes and Atomic Mass

<u>Isotope</u> - atoms of the same element with different numbers of neutrons

*note - because isotopes have the same number of protons, they have identical chemical properties

Example:

Isotopes of potassium

Various symbolic notations for isotopes:

³⁹ 19	⁴⁰ K 19	⁴¹ 19 K
or potassium-39	potassium-40	potassium 41
K-39	K-40	K-41

Remember that the mass of 1 proton ~ 1 neutron

Scientists have defined a unit that is the average mass of these two nucleons called the

<u>atomic mass unit (amu)</u>

1 amu = 1/12 the mass of a carbon-12 isotope

Atomic mass: the weighted average mass of all the isotopes of an element

General Formula for calculating a weighted average:

a%(A) + b%(B) + c%(C)...

Example Problem: Use the information below to calculate the atomic mass for magnesium.

Where can you go to check that your answer is correct?