## Math Essentials

Draw this diagram!

Accurate Precise

Not Accurate Precise


Accurate
Not Precise

Not Accurate
Not Precise


Precision: The closeness of a set of measurements to each other

Accuracy: The closeness of measurements to the correct or accepted value

Significant Figures ("sig figs"): The number of all known digits reported in a measurement, plus one estimated digit.


## What should be

 the reported length Draw this $_{\text {diagram! }}$ of the black line?To be completed in class!
(leave space to write a measurement)

# Rules for Determining the Number of Sig Figs in a Measurement 

## All nonzero digits are significant

$$
\begin{array}{cc}
721 \mathrm{~mm} & 3 \text { sig figs } \\
2,398 \mathrm{~g} & 4 \text { sig figs } \\
3.4 \times 10^{-4} \mathrm{~s} & 2 \text { sig figs }
\end{array}
$$

## Rules for Determining the Number of Sig Figs in a Measurement

Zeros that are between nonzero digits are significant.

## 106 K <br> 3 sig figs

$2,001 \mathrm{~kg}$
4 sig figs

Rules for Determining the Number of Sig Figs in a Measurement

Zeros alone on the left are never significant (place holders).
0.053 m
2 sig figs
0.00002 s
1 sig fig

## Rules for Determining the Number of Sig Figs in a Measurement

Zeros alone on the right are significant if there is a decimal point somewhere in the number (accuracy).

1210 m (place holder) 3 sig figs
200. K (accuracy)

3 sig figs
80.00 g (accuracy)

4 sig figs

Counting numbers and exact numbers have an infinite number of significant figures

$$
\begin{array}{cc}
10 \text { pairs } & \infty \text { sig figs } \\
76 \text { dogs } & \infty \text { sig figs } \\
1 \mathrm{ft}=12 \text { in } & \infty \text { sig figs } \\
\text { (conversion factor) } &
\end{array}
$$

## Sig Fig Practice

How many sig figs are in each of the following measurements?
a. 28.6 g
b. $2440 . \mathrm{cm}$

To be completed in class!
c. 910 m (leave space to the right of each number)
d. 0.04604 L
e. 0.0067000 kg

## Scientific Notation

only one digit to the left of the decimal

## N x 10n

a power
of 10

## Scientific Notation

Ex: Express 1234.56 in scientific notation.
1234.56

## if positive exponent, number is bigger than 1

$$
1.23456 \times 10^{3}
$$

## Scientific Notation

Ex: Express 0.00657 in scientific notation.
0.00657
if negative exponent, number is smaller than 1

$$
6.57 \times 10^{-3}
$$

## Scientific Notation Practice

Express the following measurements in scientific notation. Be sure to maintain the number of significant figures.
a. 5,453,000 km
b. 300.8 g
c. 0.00536 mm

To be completed in class! (leave space to the right of each number)
d. 0.0120325 mg
e. $34,800 \mathrm{~s}$

