

Name	Date
Name	Daic

Due Test Day!

Pretest: Unit 3 Ionic Compounds

The following is an overview of the concepts, ideas, and problems we have covered in this unit. You are, however, responsible for <u>all</u> material covered, regardless if found here or not! Therefore, be sure to review <u>all</u> your notes, worksheets, assignments, handouts, readings, labs, problems, etc.. On the day of the test you will want to be well-acquainted with the material <u>and</u> organized, you will not want to waste time trying to understand an idea or searching for some needed information. Arrive prepared!

Text	Reference	s:
------	-----------	----

Ionic Bonding (6.3)Metallic Bonding (6.4)

Know the following vocabulary terms listed below:			
 chemical bond 	binary compound	oxyanion	
ionic bond	binary compoundionic compound	 metallic bond 	
 covalent bond 	• formula unit	 electron sea model 	
chemical formula	 polyatomic ion 	• alloy	

Chemical Formulas (Section 7.1, pages 207-215)

Lewis (electron) dot structures
 monatomic ion

1. Use electron-dot notation to illustrate the number of valence electrons present in one atom of each of the following elements.

Li	Ca	Cl	Ο

2. Use electron dot structures to illustrate the formation of ionic compounds involving the following elements:

Forming Chemical Bonds

Use each of the terms below just once to complete the passage.

	hemical bond	electrons octet	energy le	evel noble gases valence	
Ľ	lucicus	Octet	ions	valence	_
	The force that	holds two atoms together	is called a(n) (1		
Suc	ch an attachmen	nt may form by the attracti	on of the positiv	vely charged	
(2)		of one atom for	the negatively o	charged	
(3)		of another atom	, or by the attract	ction of charged atoms,	
wh	ich are called (4	1)	. The attraction	s may also involve	
(5)		electrons, which	n are the electron	ns in the outermost	
(6)		The (7)		_ are a family of elements that	
hav	e very little ten	dency to react. Most of th	ese elements ha	ve a set of eight outermost	
ele	ctrons, which is	called a stable (8)			
For	each statemen	t below, write <i>true</i> or <i>fal</i> s	se.		
	10	D. A positively charged io	n is called an ar	nion.	
	1′	1. Elements in group 1A la 1+ charge.	lose their one va	alence electron, forming an ion with	
	12	2. Elements tend to react halogen.	so that they acqu	uire the electron structure of a	
	13	3. A sodium atom tends to	o lose one electr	on when it reacts.	
	14	 Nonmetals form a stabl and becoming anions. 	e outer electron	configuration by losing electrons	
	1!	5. A Cl ⁻ ion is an examp	le of a cation.		
	10	5. The ending <i>-ide</i> is used	l to designate an	anion.	
		pelow, circle the ionic on the strength of the bonds	•	at would have the higher melting point lattice).	
	a. KCl	KBr			
	b. AgCl	CuCl			
	c. MgCl ₂	CaCl ₂	AICI ₃		
	d CuO	CuS	7nO	7nS	

Melting point	Low	High	
Boiling point	Low	High	
Hardness	Hard	Soft	
Brittleness	Flexible	Brittle	
Electrical conductivity in the solid state	Good	Poor	
Electrical conductivity in the liquid state	Good	Poor	
Electrical conductivity when dissolved in water	Good	Poor	
For each of the following chemical formulas, write the correpresented.	rrect name of the	ionic compound	
19. NaI			
20. CaCl ₂			
21 . K ₂ S			
22. MgO			
23. LiHSO ₄			
24. NH ₄ Br			
25. Ca ₃ N ₂			
26. Cs ₃ P			
27. Fe ₂ O ₃			
28. Mg(ClO) ₂			
29. (NH ₄) ₂ CO ₃			
30. Be ₃ (PO ₄) ₂			
For each of the following ionic compounds, write the corr	ect formula for t	ne compound.	
31. beryllium nitride			
32. nickel(II) chloride			
33. potassium chlorite			
34. copper(I) oxide			
35. magnesium sulfite			
36. ammonium sulfide			
37. iron(III) perchlorate			

38. sodium nitride _____

18. Underline the word that correctly describes each property in ionic compounds.

Circle the letter of the choice that best completes the statement or answers the question.

1. An ionic bond is

a. attraction of an atom for its electrons.

b. attraction of atoms for electrons they share. c. a force that holds together atoms that are oppositely charged. **d.** the movement of electrons from one atom to another. 2. The formula unit of an ionic compound shows the a. total number of each kind of ion in a sample. **b.** simplest ratio of the ions. c. numbers of atoms within each molecule. d. number of nearest neighboring ions surrounding each kind of ion. **3.** The overall charge of a formula unit for an ionic compound a. is always zero. c. is always positive. **b.** is always negative. d. may have any value. **4.** How many chloride (Cl⁻) ions are present in a formula unit of magnesium chloride, given that the charge on a Mg ion is 2+? a. one-half **b.** one c. two d. four 5. Ionic bonds generally occur between a. metals. c. a metal and a nonmetal. **b.** nonmetals. d. noble gases. 6. Salts are examples of a. nonionic compounds. b. metals. c. nonmetals. d. ionic compounds. **7.** A three-dimensional arrangement of particles in an ionic solid is called a(n) a. crystal lattice. b. sea of electrons. c. formula unit. d. electrolyte. 8. In a crystal lattice of an ionic compound, a. ions of a given charge are clustered together, far from ions of the opposite charge. **b.** ions are surrounded by ions of the opposite charge. c. a sea of electrons surrounds the ions. d. neutral molecules are present. . What is the relationship between lattice energy and the strength of the attractive force holding ions in place? **a.** The more positive the lattice energy is, the greater the force. **b.** The more negative the lattice energy is, the greater the force **c.** The closer the lattice energy is to zero, the greater the force. **d.** There is no relationship between the two quantities. **10.** The formation of a stable ionic compound from ions a. is always exothermic. **c.** is always endothermic. . may be either exothermic or endothermic. **d.** neither absorbs nor releases energy. 11. In electron transfer involving a metallic atom and a nonmetallic atom during ion formation, which of the following is correct? **a.** The metallic atom gains electrons from the nonmetallic atom.

b. The nonmetallic atom gains electrons from the metallic atom.

c. Both atoms gain electrons.d. Neither atom gains electrons.

12.	Why	do	atoms	bond?
-----	-----	----	-------	-------

- a. to gain energy
- b. to become more stable
- c. to decrease their size
- d. to gain electrons
- 13. When a metal combines with a nonmetal to form an ionic compound, the metal will always
 - a. lose electrons
 - b. gain electrons
 - c. share electrons
 - d. have two electrons
- 14. When sodium bonds with chlorine to form an ionic compound, chlorine
 - a. loses electrons and becomes an anion
 - b. loses electrons and becomes a cation
 - c. gains electrons and becomes an anion
 - d. gains electrons and becomes a cation

Chemical Formulas and Their Names

Use each of the terms below just once to complete the passage.

anion -ate	cation	electrons
zero lower right	monatomic	one
-ite oxyanion	polyatomic	subscript

An ion with one atom is ca	lled a(n) (1)	ion. The ch	narge is related to the
number of (2)	transferred to or from the	atom to form the ic	on. In ionic
compounds, the same of the char	ges of all the ions equals (3)		Ions made up of
more than one atom are called (4)) ions	. If such an ion is n	egatively charged and
includes one or more oxygen aton	ns, it is called a(n) (5)	If	two such ions can be
formed that contain different numb	pers of oxygen atoms, the na	ame for the ion with	more oxygen atoms
ends with the suffix (6)	The name for t	he ion with fewer o	xygen atoms ends
with (7)			
In the chemical formula for	any ionic compound, the ch	nemical symbol for t	he
(8) is writte	n first, followed by the chem	ical symbol for the	
(9) A(n) (1	0) is	a small number use	ed to represent the
number of ions of a given element	t in a chemical formula. Suc	h numbers are writt	ten to the
(11) of the	symbol for the element. If no	number appears,	the assumption is that
the number equals (12)			

Metallic Bonds and Properties of Metals

In your textbook, read about metallic bonds.

Use the diagram of metallic bonding to answer the following questions.

1.	What is the name of the model of metallic bonding that is illustrated?	
2.	Why are the electrons in a metallic solid described as delocalized?	
3.	Which electrons from the metal make up the delocalized electrons?	• • • • • • • • • • • • • • • • • • •
4.	Are the metal atoms that are shown cations or anions? How can you tell?	
5.	How do the metallic ions differ from the ions that exist in ionic solids?	
6.	Explain what holds the metal atoms together in the solid.	

In your textbook, read about the properties of metals.

For each property, write *yes* if the property is characteristic of most metals, or *no* if it is not.

7.	Malleable
8.	Brittle
	Lustrous
	High melting point
11.	Low boiling point
12.	Ductile
13.	Poor conduction of heat
	Good conduction of electricity