Virtual Lab: Identifying Elements

[Please silence your computer and click on CC in the lower-left to read text]

- 1. Click on the Perform tab and select mineral #1.
- 2. Procedures:
 - (a) Bring the HCl dropper to the beaker
 - (b) Bring the hammer to the mineral (rock)
 - (c) Bring the paper to the beaker
 - (d) Bring the wire loop to the beaker
 - (e) Bring the wire loop into the flame
 - (f) Record color of the flame
- 3. Record the possible elements from the list that appears.
- 4. Click the yellow Get Spectrum Results button and use the comparison of atomic spectra to identify the element in the mineral.
- 5. Repeat steps 1-4 for mineral #2 and #3.

	Mineral 1	Mineral 2	Mineral 3
Flame Color			
Possible element(s) in mineral			
Element identity			

6. Use <u>noble gas notation</u> to write the electron configuration for the identified elements.

 Mineral #1
 Element Symbol: _____

 Electron configuration: _____

 Mineral #2
 Element Symbol: _____

 Electron configuration: ______

 Mineral #3
 Element Symbol: ______

Electron configuration:

7. After some analysis, it was determined that each of your identified elements actually were ions with a +2 charge each. With this information and using <u>noble gas notation</u>, write the correct electron configuration for these ions.

Mineral #1	Ion Symbol:
	Electron configuration:
Mineral #2	Ion Symbol:
	Electron configuration:
Mineral #3	Ion Symbol:
	Electron configuration:

